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Abstract. Conditions are given under which optimal controls are Lipschitz continuous, for dynamic
optimization problems with functional inequality constraints. The linear independence condition
on active state constraints, present in the earlier literature, can be replaced by a less restrictive,
positive linear independence condition, that requires linear independence merely with respect to
non-negative weighting parameters. Smoothness conditions on the data are also relaxed. A key part
of the proof involves an analysis of the implications of first order optimality conditions in the form
of a nonsmooth Maximum Principle.
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1. Introduction

Consider the following optimal control problem:

���




Minimize l�x�S��x�T ��+∫ T

S
L�t�x�t��u�t��dt

over x ∈ W 1�1�S�T ��IRn� and measurable u� S�T �→ IRm

satisfying
ẋ�t�=f �t�x�t��+G�t�x�t��u�t� for a.e. t ∈ S�T ��
hj�t�x�t���0 for all t ∈ S�T �� j=1�����r�
u�t� ∈ U for a.e. t ∈ S�T ��
�x�S��x�T �� ∈ C�

(1.1)

with data an interval S�T �, functions L�S�T �×IRn×IRm→ IR, f � S�T �×IR→
IRn, G� S�T �×IRn→ IRn×m, hj� IR×IRn→ IR for j=1�����r , and closed sets U ⊂
IRm and C⊂ IRn×IRn. Here, W 1�1�S�T ��IRn�, abbreviated as W 1�1, is the space of
absolutely continuous IRn-valued functions on S�T �.
First, some terminology. A control function is a measurable function u� S�T �→

IRm such that u�t� ∈ U for a.e. t ∈ S�T �. A process �x�u� comprises a control func-
tion u and a W 1�1 function x satisfying the constraints of ���. We say the pro-
cess �x̄�ū� is a minimizer if it achieves the minimum. In this case, ū and x̄ are
referred to as an optimal control and an optimal state trajectory (corresponding
to ū), respectively.
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Here we focus on conditions on the data for the above control problem that guar-
antee Lipschitz continuity of the optimal control ū. This is important for several
reasons. One is its relevance to computations: prior knowledge of minimizer reg-
ularity influences the choice of discretization procedures since, typically, higher
order schemes can achieve improved rates of convergence only when minimizers
are sufficiently regular [5]. It also affects the selection of sample period in digital
implementation of control strategies. It is further relevant to physical modelling,
where a variational formulation of the underlying dynamics must be matched to
observed phenomena, including regularity [1].
Previous conditions assuring Lipschitz continuity of optimal controls in the pres-

ence of both state and control functional inequality constraints was provided by
Hager [6]. Lipschitz continuity was established under hypotheses that (in the case
when no control constraints are imposed) include:

(i) The data is of class C2, the cost integrand is jointly convex in both the �x�u�
variables and uniformly coercive in the u variable, and the dynamics are affine
with respect to the �x�u� variables.

(ii) There exists a process �x�u� such that u is continuous and x lies in the inte-
rior of the state constraint set �x �hj�t�x��0� for each time (‘interiority’), and
C=C0×IRn, for some C0⊂ IRn(no right endpoint constraint).

(iii) There exists �>0 such that, for each t ∈ S�T �

	GT �t�x̄�t��
∑

i

!j"xhj�t�x̄�t��	� �
(∑

j

	!j 	2
) 1

2
�

where "xhj is interpreted as a column vector and the summations are taken
over values of the index i, for which the state constraint is active (‘linear
independence of active state constraints’).

Regularity of optimal controls under these hypotheses was established in [6]
by consideration of the implications of the Maximum Principle for optimal con-
trol problems with an affine state equation, a convex cost and convex functional
inequality constraints.
Later, Malanowski [7] refined Hager’s analysis to establish Lipschitz continuity

of optimal controls under less restrictive conditions, that allow dynamics nonlinear
with respect to the state variable and a cost integrand which is, possibly, noncon-
vex with respect to the state variable. Alternative proofs and additional regularity
properties of optimal controls under certain circumstances were later proved by
Dontchev et al. [2, 3].
This paper summarizes the main steps in establishing Lipschitz continuity of

optimal controls under hypotheses that are less restrictive than those invoked pre-
viously. Full details are given in [4]. The most significant improvement is that the
linear independence hypothesis (iii) of Hager, present in different forms in [2, 7], is
replaced by a less demanding positive linear independence hypothesis on the state
constraints (hypothesis (H4) below). We also allow a general convex constraint
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on the control variable (‘u�t� ∈ U , for some closed convex set U ’), in place of
the collection of functional inequality constraints in previous work, and we relax
differentiability hypotheses on the data in a number of respects.
The positive linear independence hypothesis that we employ has previously

arisen in connection with conditions for normality of multiplier sets in nonlin-
ear programming; specifically it provides a dual formulation of the Mangasarian-
Fromowitz constraint qualification (see [8]). However, consideration of positive
linear independence, in the context of optimal control regularity analysis, appears
to be new.
Our conditions for Lipschitz continuity of controls are obtained with a more

detailed analysis of the nonsmooth Maximum Principle than has previously been
undertaken. A key step is to consider the properties of trajectory sub-arcs with the
property that all state constraints active at some intermediate time are active also
at the end-times; the significance of such sub-arcs for regularity investigations was
earlier emphasised by Hager ([6], Theorem 2.1). The analysis of this greatly sim-
plifies if the control constraints are absent, the cost is quadratic in the u variable
and there is only one state constraint. (See ([10], Ch.11).)
Also, we highlight also the role of the Legendre-Fenchel transform in our anal-

ysis. This provides an important explicit representation of the optimal control (see
Equation (3.1) below).
Let us introduce some notation 	�	 denotes the Euclidean norm. The closed unit

ball in Euclidean space is written B. C⊕�S�T � denotes the space of non-negative
Borel measures on the Borel subsets of S�T �. For a given subset A⊂ IRk, &A

denotes the indicator function:

&A�y�=
{
0 if y ∈ A
+� otherwise�

We make use of two standard constructs from nonsmooth analysis (see, for
example, [9] for full details), the normal cone and the subgradient, defined
as follows.

DEFINITION 1.1. Take a closed setC⊂ IRn and a point x̄ ∈ C. We say that y∈ IRn

is a normal to C at x̄ if there exists yi→y and xi→ x̄ (in C) such that for all i,

�yi�x−xi��o�	x−xi	�
for all x∈C. The normal cone to C at x̄, written NC�x̄�, is the set of all normals to
C at x̄. (It is also referred to as the limiting normal cone.)
Given a lower semicontinuous (lsc) function f � IRn→ IR, we denote by *f �x̄�

the subgradient of f at x̄ (also known as the limiting subgradient), defined as

*f �x̄� �=�y ��y�−1�∈Nepif �x̄�f �x̄����

in which epif denotes the set ��x�!�∈ IRn×IR�!�f �x��.
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2. Conditions for Lipschitz Continuity of Normal Extremals

Denote by�� IR×IRn×IRn×IRm×IR→ IR the unmaximized Hamiltonian

��t�x�p�u�,�=�p�f �t�x�+G�t�x�u�−,L�t�x�u�� (2.1)

Let �x̄�ū� be aminimizing process. Undermild hypotheses, and, in particular, under
hypotheses (H1)–(H3) of Section 3, necessary conditions of optimality, known as
the (state constrained) Maximum Principle [10], provide the following information
about �x̄�ū�.

There exist ‘multipliers’ p∈W 1�1�S�T �-IRn�, .j ∈C⊕�S�T � for j=1�����r , and
,�0 such that, writing

q�t−�=p�t�+
r∑

j=1

∫
S�t�

"xhj�s�x̄�s��.j�ds�� (2.2)

we have

�p�.�,� �=�0�0�0�� (2.3)

−ṗ�t� ∈ con*x��t�x̄�t��q�t−��ū�t��,� a�e� t∈ S�T �� (2.4)

��t�x̄�t��q�t−��ū�t��,�

=max
u∈U

��t�x̄�t��q�t−��u�,� a�e� t ∈ S�T �� (2.5)

supp �.j�⊂ �t� hj�t�x̄�t��=0� for j=1�����r� (2.6)

(
p�S��−

[
p�T�+

r∑
j=1

∫
S�T �

"xhj�t�x̄�t��.j�dt�
])

∈ ,*l�x̄�S��x̄�T ��

+NC�x̄�S��x̄�T ��� (2.7)

A process for which these conditions are satisfied is said to be an extremal.
The methodology behind the ensuing analysis is to deduce regularity properties

of optimal controls from the conditions of the Maximum Principle. It is inevitable
then that some kind of hypothesis on the data for problem ��� is imposed, ensur-
ing that the Maximum Principle supplies useful information about the minimizer
�x̄�ū�. This hypothesis is normality. If it is possible to satisfy the conditions of the
Maximum Principle with a set of multipliers �p�.1����.r�,� in which ,=0, the
Maximum Principle makes no reference to the cost function and degenerates into
a relationship between the constraints. ‘Normality’ means that this kind of
degeneracy is excluded.

DEFINITION 2.1. A process �x̄�ū� is said to be a normal extremal if there exist
p∈W 1�1�S�T �-IRn� and .j ∈C⊕�S�T �, j=1�����r such that the relationships
(2.2)–(2.7) are satisfied with ,=1.
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We shall invoke the following hypotheses; reference is made here to the process
�x̄�ū� of interest. In the hypotheses, 3⊂ S�T �×IRn is some ‘tube’ about x̄. that is

3=��t�x�∈ S�T �×IRn� 	x− x̄�t�	� 4̄�

(for some given 4̄>0). We denote by � �t�x̄� the collection of active state con-
straints at time t, that is

� �t�x̄�=�j� hj�t�x̄�t��=0��

(H1) G, l and f are locally Lipschitz continuous functions.
(H2) For j=1�����r , hj is of class �

1+ on 3 , i.e., hj is continuously differentiable
with locally Lipschitz continuous gradient.

(H3) U is a closed, convex set. For each �t�x�∈3,L�t�x��� is finite-valued, convex
and continuously differentiable. L�t�x��� is uniformly coercive, in the sense
that there exist a monotone function 5� 0���→ IR, such that 5�s�/s→� as
s→� and

L�t�x�v�>5�	v	� for all �t�x�∈3 and v∈U�

Both L and "uL are locally Lipschitz continuous. L�t�x��� is strictly convex
in the following uniform sense: for eachM >0 there is a constant kM >0, such
that, for any �t�x�∈3 and u1�u2∈MIB, we have

�y2−y1�u2−u1��kM 	u2−u1	2� (2.8)

where y2="uL�t�x�u2� and y1="uL�t�x�u1�.
(H4) For every t∈ S�T � and every set of non-negative numbers �!j�j∈� �t�x̄�, not all

zero, we have∑
j∈� �t�x̄�t��

!jG
T �t�x̄�t��"xhj�t�x̄�t���span⋂

u∈U

NU �u��

(For a subset D⊂ IRk, spanD denotes the intersection of all linear subspaces
of IRk that contain D.)

The stage is now set for statement of conditions for Lipschitz continuity of
optimal controls.

THEOREM 2.1. Let �x̄�ū� be a normal extremal. Assume (H1)–(H4). Then ū is
Lipschitz continuous.

Comments

(a) Interest focuses primarily on cases when optimal processes are normal
extremals, for then Theorem 3.1 gives conditions for Lipschitz continuity of
optimal controls. Conditions for normality are discussed in [4]. Note how-
ever that, as far as applications to Hamiltonian mechanics are concerned,
normal extremals (and related issues of regularity) are of direct interest, since
the action principle interprets motions to normal extremals, which may be fail
to be minimizers of the action functional.
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(b) The key difference between the hypotheses of Theorem 2.1, and those
formerly invoked for regularity of optimal controls concerns the ‘non-
degeneracy’ of the state constraints. The linear independence hypothesis of [6]
(condition (iii) of Section 1) has been replaced by the positive linear indepen-
dence hypothesis (H4). (H4) is a less restrictive hypothesis in which nonzero
linear combinations of active state constraint function gradients are required
to be nonzero, only for linear combinations with non-negative weights.
A simple case when (iii) is always violated, but (H4) is possibly satisfied, is
when there are two state constraint functions such that, at some time t′ when
they are both active, we have "xh1�t

′�x̄�t′��=!"xh2�t
′�x̄�t′�� for some!>0.

Another case is when the number of active state constraints exceeds the dimen-
sion of the state space; here the gradients of the state constraint functions can-
not be linearly independent, but they will be positively linear independent if
the gradients are, in some sense, ‘uni-directional’.

(c) Suppose that the cost integrand L can be decomposed as

L�t�x�u�=L1�t�x�+L2�t�x�u��

Then the analysis of this paper, almost without change, allow us to deduce
Lipschitz continuity of optimal controls, when L2 satisfies (H3) and L1 sat-
isfies the condition: L1�t�x� is locally bounded, measurable in t for each x
and locally Lipschitz continuous in x uniformly in t. We draw attention to this
refinement, since the optimal control problems with quadratic cost integrand

L�t�x�u�=xT Q�t�x+uT R�t�u�

are of widespread interest. Our analysis establishes Lipschitz continuity of
optimal controls for such problems, when Q��� is merely measurable and
essentially bounded. (R��� is required to be Lipschitz continuous and such that
R�t� is positive definite for all t.)

3. Proof of Theorem 3.1

Here we outline the main steps in the proof of the main theorem. Full details are
given in [4].
Define the extended-real-valued function L0� S�T �×IRn×IRm→ IR∪�+��

L0�t�x�u� = L�t�x�u�+&U �u�

in which &U is the indicator function of the set U . Note that, since

max
u∈U

��t�x̄�t��q�t−��1�

=�q�t−��f �t�x̄�t���+max
u∈IRm

��q�t−��G�t�x̄�t��u�−L0�t�x̄�t��u���

we have from the ‘Maximization of the Hamilitonian’ condition (2.5) that

�GT �t�x̄�t��q�t−��ū�t��−L�t�x̄�t��ū�t��

=max
u∈IRm

��GT �t�x̄�t��q�t−��u�−L0�t�x̄�t��u�� a.e. t∈ S�T ��
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By the rules governing subdifferentials of convex functions, this last condition
implies that

ū�t� = *yL
∗
0�t�x̄�t��GT �t�x̄�t��q�t−�� a.e. t∈ S�T �� (3.1)

Here, L∗
0�t�x���� IRm→ IR∪�+�� is the Fenchel dual function of L0�t�x��� for

each �t�x�.
The representation (3.1) of the optimal control in terms of the Fenchel dual

function L∗
0 has a crucial role in the following analysis. We pause to investigate

some of its properties.

LEMMA 3.1.

(i) for each �t�x�y�∈3×IRm, *yL
∗
0�t�x�y� is single valued and continuously

differentiable. (Write it henceforth "yL
∗
0�t�x�y�).

(ii) �t�x�y�→"yL
∗
0�t�x�y� is locally Lipschitz continuous.

Proof. Take any �t�x�∈3 and y∈ IRm. The non-emptiness of *yL
∗
0�t�x�y�

follows from the representation of the subdifferential

*yL
∗
0�t�x�y�= {

u � u ·y−L0�t�x�u�=max
v∈IRm

�v ·y−L0�t�x�v��
}

and the coercivity of L (see hypothesis (H3)), which ensures existence of a
maximizing v. Take any compact neighbourhood� of �t�x� and a number N >0.
Representation (3.1) and hypothesis (H3) also ensure the existence of M >0 such
that

u′ ∈*yL
∗
0�t

′�x′�y′� and �t′x′�∈3� y′ ∈y+NB

implies

	u′	� M � (3.2)

Let k1 be a Lipschitz constant for L on� ×MB. Choose arbitrary �t′�x′�∈� and
y′ ∈y+NB. Choose also

u∈*yL
∗
0�t�x�y� and u′ ∈*yL

∗
0�t

′�x′�y′��

By a fundamental property of ‘convex’ subdifferentials

y∈*uL0�t�x�u� and y′ ∈*uL0�t�x
′�u′��

But, since "uL�t�x��� is continuously differentiable,

*uL0�t�x�u� = "uL�t�x�u�+NU �u��

It follows that

y="uL�t�x�u�+e� y′ ="uL�t′�x′�u′�+e′ �
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for some e∈NU �u� and e′ ∈NU �u′�. In consequence of the local Lipchitz continuity
of "uL and (3.2), there exists k1>0, independent of the choice of t′�x′�y′�u′� such
that

	"uL�t�x�u′�−"uL�t′�x′�u′�	� k1	�t′�x′�−�t�x�	�
Let ỹ="uL�t�x�u′�+e′. Then

	y′− ỹ	� k1	�t′�x′�−�t�x�	� (3.3)

We have

	ỹ−y		u′−u	��ỹ−y�u′−u� = �"uL�t�x�u′�−"uL�t�x�u��u′−u�
+�e′�u′−u�+�e�u−u′��

But there exist k2>0 (independent of our choice of ��t′�x′��y′� in � ×�y+NB�)
such that

�"uL�t�x�u′�−"uL�t�x�u��u′−u��k2	u′−u	2�
Also, by the definition of the ‘convex’ normal cone

�e′�u′−u��0 and �e�u−u′��0�

It follows that

	u′−u	�k−1
2 	ỹ−y	�

By (3.3) and the triangle inequality

	u′−u	 � k−1
2 �	y′−y	+	y′− ỹ	�

� k−1
2 �	y′−y	+k1	�t′�x′�−�t�x�	�

� max�1�k1�k
−1
2

√
2	�t′�x′�y′�−�t�x�y�	�

This inequality implies that *yL
∗
0�t�x�y� is single valued. Since a convex func-

tion with a single valued subdifferential is continuously differentiable, *yL
∗
0�t�x���

is continuously differentiable. The above inequality also implies that �t�x�y�→
*yL

∗
0�t�x�y� is locally Lipschitz continuous. �

LEMMA 3.2. There exist k̄>0 and 4>0 such that , for any t∈ S�T �, y∈ IRm and
�!j�

r
j=1 such that

!j �0 for each j and !j =0 if hj�t
′�x̄�t′�<0

for all t′ ∈�t−4�t+4�∩S�T �� (3.4)
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we have

�v�"yL
∗
0�t�x̄�t��y+v�−"yL

∗
0�t�x̄�t��y��� k̄

∣∣∣∑
j

!j

∣∣∣2�
where

v=GT �t�x̄�
∑

j

!j"xhj�t�x̄�t���

Proof. To simplify notation, we shall write "yL
∗
0�t�x�y+v� as "yL

∗
0�y+v�, and

suppress the argument �t�x� in expressions involving G�t�x�, etc.
Take any �!j� such that !j �0 for each j. Write

u′ ="yL
∗
0�y+v� and u="yL

∗
0�y�

where v is as in the Lemma statement. Then

y+v∈*uL0�u
′� and y∈*uL0�u��

Since L is continuously differentiable (w.r.t. the control variable)

y+v="uL�u′�+e′ and y="uL�u�+e (3.5)

for some e′ ∈NU �u′� and e∈NU �u�.
By the strong convexity hypothesis (H3), there exists k1>0, independent of our

choice of t, y and �!j�, such that

�"uL�u′�−"uL�u��u′−u��k1	"uL�u′�−"uL�u�	2�
From (3.5)

�v�u′−u�+�e′�u−u′�+�e�u′−v��k1

∣∣∣∑
j

!jG
T "xhj−e′+e

∣∣∣2�
By properties of the (convex) normal cone

�e′��u−u′���0 and �e��u′−u���0�

Further, it can be deduced from the constraint qualification (H4) that there exist k2
and 4>0, independent of our choice of �t�x�y�, e′ and �!j� e satisfying (3.4), such
that ∣∣∣∑

j

!jG
T "xhj+e′−e

∣∣∣�k2

∣∣∣∑
j

!j

∣∣∣�
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Assembling these inequalities, we conclude that

�v�u′−u�� k̄
∣∣∣∑

j

!j

∣∣∣2�
where k̄=k1k

2
2. This is what the lemma asserts. �

The following lemma, stated without proof, is a direct consequence of Lemma
3.1, the representation of ū given by (3.1), the fact that q��� is a function of bounded
variation and the Maximum Principle conditions.

LEMMA 3.3. We can choose ū ( from the equivalence class of a.e. equal functions)
to have left and right limits at all points in �S�T � and one sided limits at the
endpoints. (This version of) ū is a bounded function. The functions x̄ and p are
Lipschitz continuous.

Next we establish that . has no atoms at interior points, and list some related
properties.

LEMMA 3.4. . has no atoms in �S�T �. Consequently q��� is continuous on �S�T �,
and has one sided limits at its endpoints. ū is continuous on S�T � (strictly speak-
ing, has a continuous version). For each t∈�S�T � and j∈� �t�x̄�t��, we have

"thj�t�x̄�t��+�"xhj�t�x̄�t���f �t�x̄�t��+G�t�x̄�t��ū�t�� = 0� (3.6)

Proof. Take any t∈�S�T �. Choose j∈�1�2�����r�. If j�� �t�x̄�t��, then
.j��t��=0, by the complementary slackness condition (2.6). If, on the other hand,
j∈� �t�x̄�t��, then hj�t�x̄�t��=0. It follows

<−1�hj�t+<�x̄�t+<��−hj�t�x̄�t���0

and

<−1�hj�t�x̄�t��−�hj�t−<�x̄�t−<���0�

for < sufficiently small. Passing to the limit as <↓0 and recalling that ū has left and
right limits, we obtain

"thj+�"xhj�f +Gū�t+���0� (3.7)

and

"thj+�"xhj�f +Gū�t−����0� (3.8)

(Here, hj , f , etc. are evaluated at �t�x̄�t���.)
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We deduce from these inequalities that

�"xhj�f +G�ū�t+�− ū�t−��=0�

Noting (3.1) and appropriately weighting and summing this inequality over all j’s
in � �t�x̄�t�� gives〈 ∑

j∈� �t�x̄�t��

.j��t��G
T "xhj�"yL

∗
0�t�x̄�t��GT �q�t+�−q�t−���

〉
�0�

By Lemma 3.2 however, there exists k1>0 such that〈 ∑
j∈� �t�x̄�t��

.j��t��G
T "xhj�"yL

∗
0�t�x̄�t��GT �q�t+�−q�t−���

〉

�k1

∣∣∣∑
j

.j��t��
∣∣∣2�

It follows that
∑

j .j��t��= 0. We have shown that . has no atoms in �S�T �.
We conclude from the definition of q��� that q��� is continuous on �S�T � and has

onesided limits at the endpoints. The same is true then of ū, in view of Lemma 3.1.
By re-defining ū to take at its endpoint values one-sided limits, we can arrange that
ū is continuous. Finally we observe that (3.6) follows from (3.7) and (3.8). �

In view of the preceding lemma, we can unambiguously write
∫

s�t�
.j�d=� as∫ t

s
.j�d=�, for any s�t�⊂ S�T �.
The next objective is to find a constantK such that, for any interval s�t�⊂ S�T �,

we have
∫ t

s
.j�d=��K	t−s	.

The following lemma establishes such a bound, in the special case when s�t�
has the following property: all state constraints that are active at some point in the
interior of s�t� are active also at both endpoints. To investigate this special case, it
his helpful to introduce some additional notation:

�s�t� �=�j∈�1�����r�� hj�?�x̄�?��=0 for some ? ∈�s�t���

(The right side will be recognized as ‘the set of indices corresponding to state
constraints that are active at some point in (s,t)’.)

LEMMA 3.5. There exists K >0 such that, given any interval s�t�⊂�S�T � with
the property

hj�s�x̄�s��=hj�t�x̄�t��=0 for all j∈�s�t��

we have∑
j

∫ t

s
.j�d=��K	t−s	 for all j∈�s�t��
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Proof. See the details in [4].
Now define

�s�t� �=cardinality��s�t���

For r̄ ∈�0�����r� denote by �Hr̄� the condition
�Hr̄�: there exists Kr̄ �0 with the property: given any subinterval s�t�⊂ S�T �

such that�s�t�� r̄ we have

∑
j

∫
s�t�

.j�d=��Kr̄ 	t−s	 �

LEMMA 3.6. Condition �Hr̄� is satisfied for r̄ =r .

Outline of Proof. �Hr̄� is true for r̄ =0 since, in this case, .j =0 for all
j∈�1�����r�. Suppose next that �Hr̄� is true for some r̄ ∈�0�����r−1�. Applying
the preceding lemma to suitably chosen subarcs, we can deduce that �Hr̄+1� is also
true. Details of the analysis are supplied in [4]. The assertions of the lemma follow
by induction.
Completion of the proof of Theorem 3.1 is now straightforward. Since

cardinality��S�T ���r�

we deduce from Lemma 3.6 that there exists Kr >0 such that, for every s�t�
⊂ S�T �,

∑
j

∫
s�t�

.j�d=��Kr 	t−s	�

Since p��� is Lipschitz continuous,

q�t�

(
�=p�t�+

∫
S�t�

∑
j

"xhj�s�x̄�s��.j�ds�

)

is also Lipschitz continuous on �S�T �. �

It merely remains to conclude from Lemma 3.1 that the version of ū chosen
to coincide with the function t→*yL

∗
0�t�x̄�t��GT �t�x̄�t��q�t�� on the interior of

S�T � and to assume the function’s one-sided limits at the end-points, is Lipschitz
continuous.
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